Week Five: Friday

Today we had our first journal club meeting of the lab. Abby and I had read the paper Stretching DNA by Marko and Siggia. The paper introduces the theory behind the worm like chain model of polymers and applies it to DNA, which happens to be a semi-flexible polymer. The main importance of the paper is a useful formula which gives an approximate interpolation for the WLC force versus extension. This is a go to formula for most force extension work when it comes to force spectroscopy experiments with DNA. The main importance of this article however, is the fact that this interpolation formula is only useful for low and high end force ranges. At ranges in the middle, this formula is no longer accurate.

In addition to reading, I looked at more of the code today, trying to get the images displayed from the camera to the screen saved to file. What I found is that there exists a fatal error in the existing version of the code due to an inappropriate file call. What will happen if the user attempts to save the images to file is that the application will crash, and the user will be forced to stop the program through the task manager. This is of course not very useful.

Finally, Professor Andresen continued to teach me the basics of machining, introducing me to the procedures in operating the mill. We used the mill to machine a piece that attaches our XY table to the posts we machined earlier. This is what the lab looks like as of now:

Week Five: Thursday

Today I started by playing with the rotary motor. While it worked as expected following my port of the motor code to existing code that works for the other stepper motors, I had some difficulty figuring out what the exact unit was to make the motor do one full rotation. This actually took some time to calibrate. In the end, I had to find both how many steps the stepper motor took, and how many substeps the motor controller takes, multiply the two, and then for some reason multiply this number by three. This gives me how many sub steps are in one revolution for the motor. I then made this number be defaulted to 1, so that if the user entered in 1 for the unit the motor should turn, the motor will turn just 1 time. In order to ensure that the error in turning was minimized, I blew up the amount of turns the motor should take to 100. Thankfully, the motor stopped at the same spot it started at after 100 turns, indicating that the error is minimal.

By the afternoon, I had played with the code and camera interactions a little bit more. I noticed that there was a significant lag between what is displayed on the screen of the computer and movements that the camera actually sees. I believe, although I can’t test this yet since I don’t have the objective lens, that the portion of the code that generates the lookup table works as well.

The next steps will be to finish focusing the lens for the camera and to clean it. I also need to figure out how to attach the rotary motor, and the stepper motors to the XY table. There will probably be a significant amount of machining to do in the near future, which isn’t ideal, but necessary.

Week Five: Thursday

Today, I fixed the error bars on my graphs because I forgot to add my standard errors in quadrature. I also talked to Prof. Andresen to decide what to run next week to shrink the error bars. This afternoon I have been reading about optical emission spectrometers and I read the information for our round table tonight about research ethics. 

Week Five: All the Graphs, all the Time

Today, I finished my PowerPoint and fixed all of the first run data of the cobalt- varied samples. I also read several journal articles including one about the Wormlike Chain Model that was very confusing. This afternoon, I showed my PowerPoint to Prof. Andresen and he noticed that the amount of sodium in the samples was significantly different between the 20x and 100x dilution. To try and correct this, I redid my analysis using all three wavelengths the ICP measured, averaged them all for each sample and added this to the figure to result in the figure below.


As you can see, the addition of the other wavelengths just shifted the data down but did not bring them closer to each other.

Week Five: Mike Mike Mike Mike Mike! Guess what day it is!

Today I read up more on the worm like chain (WLC) model and its applications to a semi-flexible polymer, which DNA is. The posts that I spray painted yesterday have fully dried and are ready to use. The power supply for the camera arrived, and we managed to get the camera safely working with it. By the afternoon, we placed the focusing lens in place, and although it isn’t focused at the right distance, we managed to get a pretty nice picture.

In the process however, we dirtied the focusing lens a good bit, and it will have to be cleaned. The next step after cleaning will be to get it focused at just the right distance.

Week Five: Tuesday

Today, I finished (relatively, I still need the motors to test it for sure) porting the code for the remaining motors to work off of the code for our motor control board. This is pretty good, because it means that the code is almost, if not entirely, full operational.

Also, I spray painted some posts.

Week Five: Monday

Today:

All four posts have been machined and are ready to be mounted. Also, the framegrabber for the camera arrived today. We placed this in the computer, installed the software, and set about trying to get the camera to work. Unfortunately, we do not yet have a power supply for the camera, so we rigged one up momentarily.
Attached camera with rigged power supply.
After a little hassle, we managed to get the camera working to show changes in light. Nothing was in focus of course because the focusing lens is not yet set in the lens tube. As of today, all of the files needed for the code to work are present, so all of the code is technically working, just not for us. My next step is to update the code for the remaining motors to be run off of our motor control board. After this is finished, all of the code should be working for us.

Week Five: Monday

Today, I recreated the sodium-varied samples at 20x dilution and ran them through the ICP twice. Mistake time: I tried to open up chrome once I began the second run to send myself the first set of data and apparently that is a horrible idea because the computer freaked out and shut down 🙁 
Once I got the computer to be alive again, I ran the data for the second time. This afternoon, I started work on the data from the four runs of the samples. Tomorrow I will fix the graphs, clean up the excel file and create a PowerPoint to share with our collaborators including full explanations of the method, error propagation and detailed explanation of each graph.